Chlorooxoishwarone and 2,6-Dimethoxybenzoic Acid

By S.Swaminathan and T.M. Vimala
Physics Department, I.I.T., Madras 600036, India
and H. Lotter
Max-Planck Institut für Biochemie, 8033 Martinsreid bei München, Germany (BRD)

(Received 12 November 1975; accepted 11 January 1976)

Abstract. The simple direct method for solving projections of centrosymmetric crystals [Swaminathan \& Lessinger, Cryst. (1973), A 29, 717-720; A 30, 458] has been found quite effective for the centrosymmetric projections of two non-centrosymmetric crystals: (i) the unique axis projection of chlorooxoishwarone $\left(P 2_{1}\right)$ and (ii) the c-axis projection of 2,6 -dimethoxybenzoic acid $\left(P 2_{1} 2_{1} 2_{1}\right)$.

Introduction. Orthoveratric acid (space group $P 2_{1} / c$), (\pm)-2,4,6-trimethylpimelic acid ($P 2_{1} / c$), morpholinium nitrate ($P 2_{1} / c$) and 3,4-dimethoxybenzoic acid ($P \overline{1}$) were recently solved in their short axis projections by a set of very few optimally chosen reflexions (Swaminathan \& Lessinger, 1973, 1974; Swaminathan, Vimala \& Lessinger, 1975). This simple method is also effective for the centrosymmetric projections of the following two non-centrosymmetric crystal structures.

Chlorooxoishwarone, $\mathrm{C}_{15} \mathrm{H}_{\mathbf{2 0}} \mathrm{O}_{\mathbf{2}} \mathrm{Cl}$. This crystallizes in the space group $P 2_{1}$ with $a=9 \cdot 15, \quad b=6 \cdot 90$, $c=11.86 \AA, \beta=114.4^{\circ}$ and $Z=2$. Among $39 E(h 0) \geq$ 1.40 (Table 1) are $61 \Sigma_{2}$ relations (Table 2) with $P_{+} \geq 0.750$. A phase indication is accepted only if it is corroborated by at least another that is consistent with it. A lone contradiction is overlooked if it is overweighed by several opposite but among themselves consistent indications. Phase indications with

Fig. 1. Graph showing the interdependence of the \sum_{2} relations for chlorooxoishwarone. Code numbers in circles are for the starting set.
more than one contradiction or those of alternative possibilities are to be avoided as suspect. Coincidences (Table 3) resulting from the Σ_{2} relations give on feedback the sign of the reflexion 602 , code No. 50 , to be positive. The three consistent indications in Table 3 are further reinforced by a Σ_{1} indication, $S(47) S(47)$ $S(50)=+1$.

Table 1. $E(h 0) \geq 1.40$ in chlorooxoishwarone

Code number	h	k	l	E	Code number	h	k	l	E
3	1	0	-11	$1 \cdot 72$	30	0	0	-3	$1 \cdot 51$
6	5	0	-11	$1 \cdot 78$	36	7	0	-3	$1 \cdot 51$
7	6	0	-11	$2 \cdot 18$	37	8	0	-3	$1 \cdot 78$
8	1	0	-10	$1 \cdot 72$	40	1	0	-2	$1 \cdot 43$
9	8	0	-10	$1 \cdot 47$	43	8	0	-1	$2 \cdot 01$
10	9	0	-10	$1 \cdot 53$	44	5	0	0	$1 \cdot 53$
11	1	0	-9	$2 \cdot 00$	47	3	0	1	$1 \cdot 40$
15	2	0	-8	$2 \cdot 01$	48	6	0	1	$1 \cdot 83$
16	4	0	-8	$1 \cdot 74$	50	6	0	2	$2 \cdot 29$
17	7	0	-8	$3 \cdot 02$	51	7	0	2	$1 \cdot 44$
18	8	0	-8	$1 \cdot 60$	53	2	0	3	$1 \cdot 51$
19	2	0	-7	$1 \cdot 40$	56	6	0	3	$1 \cdot 64$
20	5	0	-7	$1 \cdot 47$	58	6	0	4	$2 \cdot 17$
21	6	0	-7	$1 \cdot 47$	60	1	0	5	$1 \cdot 95$
22	7	0	-7	$1 \cdot 69$	61	5	0	5	$1 \cdot 68$
23	10	0	-7	$1 \cdot 72$	65	7	0	6	$1 \cdot 46$
25	6	0	-6	$1 \cdot 70$	67	1	0	8	$1 \cdot 45$
26	7	0	-6	$2 \cdot 35$	68	5	0	8	$1 \cdot 63$
27	8	0	-6	$1 \cdot 59$	73	2	0	10	$1 \cdot 53$
28	6	0	-5	$1 \cdot 58$					

The origin in projection is defined by reflexions $70 \overline{8}$, code No. 17, and 301, code No. 47, through symbols I and II. Reflexion 10,0,7, code No. 23, is related to them by a Σ_{2} relation and pending corroboration is given the symbol III. Three reflexions, code Nos. 40, 60 and 11, are assigned the symbols A, B and C respectively. The interdependence of the Σ_{2} relations is best seen graphically (Fig. 1). In the graph, each line connecting the code numbers of a pair of reflexions is marked with the symbol of a third reflexion belonging to the starting set and with which the first two form a Σ_{2} relation. If along any closed path in the graph the symbols occur in pairs, the Σ_{2}

Table 2. Σ_{2} Relations in chlorooxoishwarone

Serial number	Code numbers of reflexions		Serial number	Code numbers of reflexions			
1	3	7	44	32	15	36	61
2	3	17	56	33	16	22	47
3	3	22	58	34	16	23	48
4	3	25	61	35	16	29	53
5	6	9	47	36	16	50	73
6	6	17	53	37	17	23	47
7	6	25	60	38	17	25	40
8	7	10	47	39	17	37	60
9	7	18	53	40	18	26	40
10	7	26	60	41	19	22	44
11	7	36	67	42	19	27	48
12	7	43	73	43	19	37	58
13	8	17	50	44	19	47	67
14	8	18	51	45	20	23	44
15	8	22	56	46	20	27	47
16	8	26	58	47	20	48	67
17	8	29	61	48	22	29	40
18	9	23	53	49	25	37	53
19	9	17	40	50	25	51	67
20	10	11	43	51	26	30	36
21	10	18	40	52	26	43	60
22	10	19	36	53	27	30	37
23	11	16	47	54	30	48	58
24	11	17	48	55	30	60	67
25	11	22	50	56	30	61	68
26	11	26	56	57	40	47	53
27	11	37	65	58	40	51	58
28	11	47	73	59	40	53	60
29	15	17	44	60	40	56	61
30	15	20	47	61	48	60	65
31	15	27	50				

Table 3. Coincidences and phase indications from the Σ_{2} relations in chlorooxoishwarone

Code	nu		Coincidence		s o	ined from
(1)	(2)	(3)	relationships			ences
11	16	47				
11	47	73	$16=73$	16	50	$73 \rightarrow 50+$
11	16	47				
16	22	47	$11=22$	11	22	$50 \rightarrow 50+$
9	17	40				
17	25	40	$9=25$			
10	18	40				
18	26	40	$10=26$			
15	20	47	$15=23$			
20	23	47	$15=27$	15	27	$50 \rightarrow 50+$
20	27	47	$23=27$			
7	26	60				
26	43	60	$7=43$	7	43	$73 \rightarrow 73+$
19	22	40				
22	29	40	$19=29$			
40	47	53				
40	53	60	$47=60$			

relations involved are consistent with each other; if they do not occur in pairs, relations between the symbols are obtained. There are at least six indications that $\mathrm{III}=\mathrm{I} \times \mathrm{II}$. There are indications that B is II (which can be chosen arbitrarily) and also that it is positive. From the graph in Fig. 1(a), 18 phases are obtained through the three symbols A, B and C. The origin-defining symbols, I and II, are both assumed negative. Of eight maps that were made the best was

Fig. 2. (010) electron density projection of chlorooxoishwarone. Terms used: $A-; B+; C-$.

Fig. 3. Interdependence of \sum_{2} relations in 2,6 -dimethoxybenzoic acid. Reflexions of the starting set are circled.

Fig. 4. (001) electron density projection of 2,6 -dimethoxybenzoic acid. Terms used: $A+; B+$. (Phases correspond to origin shifted by $\mathbf{a} / 4$.)

h	k	l	E	h	k	l	E
0	4	0	+1.64	3	3	0	-1.64
2	2	0	+1.85	5	8	0	-2.42
3	1	0	+1.79	8	7	0	-1.35
4	2	0	+1.61	1	12	0	+1.71
7	5	0	-1.67	2	6	0	+2.31
1	9	0	-2.01	3	5	0	+1.64
2	3	0	-1.68	6	4	0	+2.30

easily chosen, and shows (Fig. 2) the main features of the molecule. In this case a model was fitted to the map. Even if a complete model is not available for lack of the chemical structure, fragments of known configuration may often be inferred from spectrochemical evidence, and the fragments may be recognized in the map or fitted to it. The structure analysis and refinement in three dimensions are complete with $R=0 \cdot 120$ using individual isotropic temperature factors for the eighteen (non-hydrogen) atoms.

2,6-Dimethoxybenzoic acid. In contrast to two other isomers [orthoveratric acid and 3,4-dimethoxybenzoic

Table 4. $E(h k 0) \geq 1.35$ in 2,6-dimethoxybenzoic acid

Code number	h	k	l	E	Code number	h	k	l	E
1	0	4	0	1.64	14	4	2	0	$1 \cdot 61$
2	0	10	0	1.36	15	4	3	0	1.48
3	0	12	0	2.05	16	4	5	0	1.73
4	1	9	0	2.01	17	4	12	0	1.52
5	1	12	0	1.71	18	5	8	0	2.42
6	2	2	0	1.85	19	5	9	0	1.48
7	2	3	0	1.68	20	6	2	0	1.52
8	2	5	0	1.51	21	6	4	0	2.30
9	2	6	0	2.31	22	6	8	0	1.83
10	2	11	0	1.70	23	6	9	0	1.72
11	3	1	0	1.79	24	7	5	0	1.67
12	3	3	0	1.64	25	8	3	0	1.35
13	3	5	0	1.46	26	8	7	0	1.35

Table 5. Σ_{2} Relations in 2,6-dimethoxybenzoic acid

Serial number	Code numbers of reflexions				Serial number	Code numbers of reflexions		
1	1	6	9	29	7	21	26	
2	1	11	13	30	8	12	18	
3	1	11	12	31	-8	15	20	
4	1	21	22	32	8	15	22	
5	1	25	26	33	8	20	25	
6	-2	14	17	34	8	20	26	
7	2	20	22	35	9	10	16	
8	-2	25	26	36	9	12	19	
9	3	21	22	37	9	14	21	
10	4	5	7	38	9	14	22	
11	4	9	12	39	9	15	23	
12	4	12	17	40	9	23	25	
13	4	21	24	41	10	12	18	
14	-5	10	11	42	10	14	23	
15	-5	15	19	43	-10	15	22	
16	-5	18	21	44	10	21	26	
17	5	24	26	45	10	22	25	
18	6	7	16	46	11	12	20	
19	6	8	15	47	11	12	21	
20	6	14	21	48	11	13	21	
21	6	23	26	49	11	18	26	
22	-7	8	14	50	12	13	20	
23	-7	9	15	51	12	13	22	
24	7	13	18	52	12	14	24	
25	-7	16	20	53	13	18	25	
26	7	16	22	54	14	16	25	
27	-7	17	23	55	14	16	26	
28	-7	18	24	56	-16	17	26	

acid (Swaminathan \& Lessinger, 1973, 1974; Swaminathan, Vimala \& Lessinger, 1975)], 2,6-dimethoxybenzoic acid crystallizes in the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$ with $a=7 \cdot 21, b=13 \cdot 95, c=8 \cdot 98 \AA$ and $Z=4$. The crystals grow as needles along the c axis. $E(h k 0)$ were obtained from a Wilson plot for only the zonal reflexions. There are 26 reflexions (Table 4) with $E(h k 0) \geq 1 \cdot 35$, among them $56 \Sigma_{2}$ relations (Table 5) with $P_{+} \geq 0.750$. Coincidences resulting from the Σ_{2} relations show contradictions involving code numbers $8,10,15,20,22$ and 25 . These reflexions were left out of consideration, along with the Σ_{2} relations in which they occur. 20 reflexions, with $27 \Sigma_{2}$ relations among them, remain. The accepted coincidences consistently show that reflexion 040, code No. 1, is positive. (There are no contrary indications from the rejected coincidences that it is otherwise.) Three Σ_{1} relations, $S(1) S(6) S(6)=+1, \quad S(1) S(14) S(14)=+1 \quad$ and $S(1)$ $S(20) S(20)=+1$, support this phase.

The origin in projection is defined by reflexions 230, code No. 7, and 508, code No. 18, through symbols I and II which are later both assumed to be negative. Code No. 24 is related to them and is assigned symbol

Table 6. Coincidences and phases from Σ_{2} relations in 2,6-dimethoxybenzoic acid

$-20=22^{*} \quad 2-*$
$-15=25^{*}$
$-15=26$

$-8=10^{*}$			
$25=26$			
$21=22$	$1+; 2$	$-*$	$\begin{array}{l}(5) ;(8) \\ 25\end{array}$

$15=25^{*}$
$-15=25^{*}$
$20=21$
$11=13 \quad 21+\quad$ (48)
$12=13$
$20+$
$2+$
$1+$
$2+$
$1+$
$\begin{aligned}-7 & =23 \\ 7 & =25\end{aligned} \quad 17$
$-13=24$
$-20=22^{*} \quad 2-*$

4	$\&$	9	
5	$\&$	8	

$\begin{array}{llll}11 & \& & 12 \\ 11 & \& & 36 \\ 18 & \& & 25 \\ 18 & \& & 26 \\ 19 & \& & 31 \\ 19 & \& & 32 \\ 20 & \& & 37 \\ 23 & \& & 39 & \\ 24 & \& & 53 & \\ 24 & \& & 28 & \\ 25 & \& & 26 & - \\ 29 & \& & 44 & \end{array}$
$1=3$
$-1=2$
$9=17$
$4=19$
$6=22$
$-6=20$
$-6=20$
$7=10$

都
$\begin{array}{lll}30 & \& & 41 \\ \text { \& } & 32\end{array}$

31	$\&$	33
31	$\&$	34

$\begin{array}{lll}32 & \& & 43 \\ 33 & \& & 34 \\ 37 & \& & 38 \\ 39 & \& & 40 \\ 43 & \& & 45\end{array}$
$\begin{array}{lll}43 & \& & 45 \\ 46 & \& & 47 \\ 46 & \& & 50\end{array}$
47
50
54
54
55 \&

* Contrary coincidences or indications are also obtained elsewhere in the table.
III. From the reflexions with the largest values for the product of the normalized structure factor with the number of \sum_{2} relations for a reflexion, code Nos. 9 and 21 are respectively assigned symbols A and B. The interdependence of the \sum_{2} relations is shown by the graph in Fig. 3, verifying many times over that $\mathrm{III}=-\mathrm{I} \times \mathrm{II}$. Fourteen phases are obtained through the two symbols A and B. The best of four possible maps clearly showed the molecule in projection (Fig. 4). The projection refined easily to $R=0.150$ with individual isotropic temperature factors on the thirteen (non-hydrogen) atoms.

Both structures will be published in greater detail.

One of use (S.S.) owes thanks to the Deutscher Akademischer Austauschdienst for a visitor fellowship and to the Max-Planck Institut für Biochemie, Martinsried bei München, for the privilege of working there during the fellowship when this work was done.

References

Swaminathan, S. \& Lessinger, L. (1973). Acta Cryst. A 29, 717-720.
Swaminathan, S. \& Lessinger, L. (1974). Acta Cryst. A30, 458.

Swaminathan, S., Vimala, T. M. \& Lessinger, L. (1975). Acta Cryst. A31, S 119.

Acta Cryst. (1976). B32, 1900

(R)-7-Ethyl-1,4,5,6,7,8,9,10-octahydro-2H-3,7-methanoazacycloundecan[5,4-b]indole, (Quebrachamine)

By C.Puglisi*
Departamento de Físico-Quimica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina

R.F.BAGGIO
División Cristalografia, Comisión Nacional de Energia Atómica, Av. del Libertador 8250, Buenos Aires, Argentina
and S. Baggio \dagger
Departamento de Fisico-Quimica, Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina

(Received 10 November 1975; accepted 27 February 1976)

Abstract

C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2}\), monoclinic, $P 2_{1} ; a=15.01$ (3), $b=7 \cdot 10$ (2), $c=8 \cdot 25$ (2) $\AA, \beta=105 \cdot 8$ (3) $)^{\circ}, V=846 \cdot 2 \AA^{3}$; $Z=2, D_{m}=1 \cdot 114, D_{x}=1.108 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu(\mathrm{Cu} K \alpha)=4 \cdot 9$ $\mathrm{cm}^{-1}, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA$, filtered with Ni . The conformation of the eleven-membered ring and the geometry around its N atom are discussed and compared with those of a related alkaloid (cleavamine). A correlation between the slow rate of methylation observed, and the expected positions of the lone pair of N electrons according to the structure obtained, is made.

Introduction. The crude material, extracted from Aspidosperma (Quebracho blanco), was recrystallized from a saturated methanol solution. On standing, well-developed colourless needles were obtained. They were mounted with the needle axis (b) parallel to the goniometer spindle. Preliminary precession photographs taken with Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$) gave the cell dimensions with an accuracy of about $3 / 1000$.

From systematic extinctions ($0 k 0: k=2 n+1$) as well

[^0]as from the well known optical activity of the compound, $P 2_{1}$ was inferred to be the correct space group.

Integrated intensity data were gathered by photographic methods. Levels $h 0 l$ to $h 5 l$ were taken with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 5418 \AA$) using equi-inclination Weissenberg techniques, while levels $0 k l$ and $h k 0$ were recorded with a precession camera, and Mo $K \alpha$ radiation. A total of 1244 reflexions (about 65% of the Cu sphere) were measured with a manual densitometer. Of these, 128 were considered unobserved and given $F_{o}=0$.

After the usual geometrical corrections were performed, data were cross correlated by the least-squares method of Hamilton, Rollett \& Sparks (1965). Absorption corrections were neglected (maximum $\mu R=$ $0 \cdot 5$). A Wilson plot was used to reduce structure amplitudes to an absolute scale and normalized structure factors $|E|$ were calculated.

To solve the phase problem, the multi-solution method described by Germain, Main \& Woolfson (1970) and implemented in their program MULTAN, was attempted. The origin-defining phases were chosen to be $203,11,0, \overline{3}$ and 615 and assigned the value 0 . The starting set was completed with three well connected phases: $a=10,4,2, b=21 \overline{2}$ and $c=13,0,0$.

[^0]: * Present address: INTI, Av. Gral Paz y Constituyentes, San Martin, Pcia de Buenos Aires, Argentina.
 \dagger Present address: ALUAR, Cangallo 525, Buenos Aires, Argentina,

